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ABSTRACT

A numerical method of computing reflection and transmission
coefficients for inhomogeneous plasma layers when the gradient of
inhomogeneity is normal to the surface of the layer is presented. The
method is applied to a specific problem of telemetry from a body re-

entering the earth's atmosphere and the results are discussed.
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INTRODUCTION

In attempting telemetry of data from test bodies re-entering
the earth's atmosphere, the problem of penetrating with an electro-
magnetic wave the sheath of ionized gases (plasma) which envelopes
these bodies at hypersonic velocities is encountered, A knowledge of
reflection and transmission coefficients for the sheath is of value in
attempts at solution of this problem.

This paper presents a method for computing reflection and
transmission coefficients for a plane-parallel inhomogeneous isotropic
layer of plasma when the inhomogeneity is a function only of distance
along a normal to the surface of the layer. A plane wave at normal in-
cidence is assumed,

It is recognized that as a model for the plasma sheath described
above, the idealization treated is deficient in several important respects.
It neglects the curvature of the layer as well as the fact that the incident
wave is not plane. The effects of induction fields near the antenna and
the problem of antenna breakdown are similarly ignored.

Despite these objections, it is believed that solutions of the
simplified problemn may be taken as order of magnitude estimates of the
transparencies of sheaths having the prescribed distributions of electrical
properties. Moreover, the results should be of interest for comparison

with those of more comprehensive calculations,



This and related problems have been treated by several authors,
but most of these neglect the effect of spatial variation of collision fre-
quency which Kritz7 has shown to be significant (in certain cases) in
determining the reflection and transmission characteristics of the plasma.

Exact analytic solutions in closed form are possible only for the
simpler distributions of permittivity and conductivity, and more com-
plicated distributions have been treated using various approximation
methodsl' 2,6, 8. Existing solutions of these types for a few simple
plasma geometries are discussed and tabulated by Graf and Bachynski3.
These solutions, however, have rather limited applicability and may prove
cumbersome in calculations of reflection and transmission coefficients.

A direct and expedient method for computing these coefficients for a wide
variety of distributions of both permittivity and conductivity which takes
advantage of available automatic computation facilities is needed.

These rejuirements are probably best met by a method involving
the direct numerical integration of Maxwell's equations within the
plasma. This approach is not new, and several workers in the field
have discussed the relative merits of different forms for the equations
and of various integration processes. Kritz7 presents a method, and
Zivanoviclo uses a numerical technique to compute a set of matrix

elements descriptive of the plasma layer after the manner of four terminal

networks and transmission lines in network theory. Klein6 and Budden1



treat the problem of joining approximate analytic solutions with numerical
solutions at boundaries separating the regions of validity of the two.
Each of these approaches offers certain advantages.

The computer program used provides flexibility in the choice of
distributions of both conductivity and permittivity and the modified
Runge-Kutta integration process employed allows for control of accuracy
in the solution. The program is described in greater detail in a report

by Kavanaugh and Sca.rboroughs.



ANALYSIS

Maxwell's equations for a stationary medium containing no free

charges are:

AV B(t) =0
V- Bit) = 0
- = (1)
X E(t) = -9%‘—‘)
UxH®t) = T + a;m .

For an inhomogeneous isotropic plasma, the constitutive equa-

tions may be written

B(t) = pH(t)
D(t) = ¢ B() (2)
5' = cE(t)

with p , ¢. and o scalar functions of position.

In a plasma it is observed that the effective permeability

is very nearly equal to the free-space value p,. It has been

shown in several works 5.6, 8, that, if only those fields whose time

-iwt . .
dependence may be expressed as e are considered, the conductivity

effective in the plasma is given by the relation

2
~ vne
o = —_—g_—(vz " z) . (3)



This expression is arrived at by considering the motion of an
electron under the influence of an electromagnetic wave and subject to
damping by collisions with heavier particles. The v x g(t) term in the
Lorentz force is found to be negligible.

The same analysis leads to the following expression for the

permittivity effective in the plasma:

ne®
€ =€ [1 - ———-————-:‘ . (4)
° me (v¥ + W?)
(o)
. ne?
In terms of the plasma frequency wng oy the expressions (3)
o
and (4) are
prz
o =c
oWt + o) (5)
and
e
c=c°[l-v2+wz]- (6)
- -~ o3 - - ajiwt
Writing E(t) = E e Wt and Hitym He 1 and using the
constitutive equations (2), Maxwell's equations (1) become
AVARNY E =0
V.-H=0
(7)

vxr::iwoé’

<
X
=
n

(¢ - iwc)E,



Confining attention to the particular geometry of interest, if the
spatial variations of the field quantities and ¢ and ¢ depend on a single
coordinate z normal to the surface of the layer, the harmonic fields
are transverse and the equations (7) reduce to

—ﬁ' aCE
0z

:_st
S|z

(8)

o
(9
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in which n is a unit vector along the z axis. Expanding the first of these

yields the relation

=
T
o

(9

- "af
n E—+ ¢n- =
dz

(3]
N

The first term of (9) represents a coupling between the electric field
vector and the gradient of the inhomogeneity in permittivity which is here

-
zero sincen . E = 0 for a transverse field and normal incidence.

Hence, the first of equations (8) becomes

34
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A further simplification of the equations is possible, since only
the magnitudes of the field need be considered, their directions in space

being constant. The third and fourth of equations (8) then reduce to

dE .
az T e
(10)
dH . .
1z =i+ i) E,

the first two equations yielding no additional information concerning the
fields.

Equations (10) have been solved exactly for only a few simple dis-
tributions, ¢(z) and 0(z) and the general case must be treated by various
approximation methods or by numerical techniques. Since in the
present instance, numerical values for reflection and transmission co-
efficients are of greater interest than a general solution to (10} and
facilities for high-speed automatic computation are available, the latter
alternative is favored,

Following a procedure suggested by the work of Kritz7 and
Buddenl, a transmitted wave ET of a particular amplitude (unity) and
phase (k_z - ko,z,), is assumed in the free space region immediately
"outside' (z > z,) the plasma layer. (See Figure l.) With ET (zo) =1

€

o
and HT (zo) = — as initial values, the four simultaneous equations
o

represented by (10) are integrated numerically over the region 0 <z< z,
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Figure 1. Schematic Representation Showing the

Type of Solution Valid in Each Region



the integration proceeding backwards along the z axis. At the boundary

z = 0, it is required that the E and H fields be continuous, i.e., that

el o)+ R 0) = E (0)
(11)
1t o) + 5Y (0) = H (0)
But
1 1
O =£E,
R o) =},
[e)
(12)
[
I _ _m 1
H (0) = > Eo ,
and
R o) e. [-m g R
n, o

Substituting from (12) into (11), the following pair of simultaneous

equations is obtained:

E'+eER-E(
o (o]
(13)
m
el.gR. /-—OH(O)
(o] (o] €
m
Solving for EOI and EOR gives
1 H 1
E°=§[E(O)+ ’-E-EH(O)J (14)
|
m
and
R _1 2
E, -z[E(O)- - H(O)] .
m



The reflection coefficient, defined by

R
f= Fo | 15)
T LIz
BN
becomes, in terms of E;, E;, Hy, H; defined by E(o) = Ex + iEj and
H (o) ® H, + iH;,
— 2 — — 2
N - + -
R = ( cm Er ’Jpo Hr) Nem I‘:i \lp'o Hi) (16)
We E +ap H)  + We E ++p H)
m r o'r m i o i
Similarly, the transmission coefficient is
T = (17)

Requiring conservation of energy gives for the absorption coefficient

A=1-(R+T) . (18)

12



EXAMPLE

The following study will serve as an example of the type problem
to which the method is applicable:

It is required to find transmission and reflection coefficients for
the plasma sheath surrounding certain bodies during re-entry at an alti-
tude of 80 km and at speeds of Mach 18 and Mach 30. Various
positions on the body surface are to be considered in order to determine
the most favorable location for a transmitting slot antenna, and the effect
on transmission of varying the dielectric constant of the "window' cover-
ing the slot is to be investigated. A transmitting frequency of 240 Mc/s
is assumed.

Electrical properties of the plasma were computed from chemical
equilibrium flow field values of pressure and enthalpy. Two points on the
body surface (at 2 R, and 4 Ry, as measured along the axis of symmetry,
where R, is the nose radius of the body) were selected as representative,
(Figure 2). Profiles of relative permittivity and conductivity along linrs
normal to the body surface at these points were taken as the distribui .ns
of electrical properties within a plane-parallel plasma slab and along a
normal to its surface. A more complete description of the above proce-
dure is to be found in the appendix, together with curves representing the
distributions prevailing at the various speeds and positions,

The distributions were approximated by the following analytical

expressions:

11
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RESULTS

The reflection and transmission coefficients computed using

these distributions and for several values of ey, are tabulated below:

Ma.ch 30
2 Rn 4 Rn
¢em/€o R T R T
1 0.998 0.529 x 10”7’ 0.998 0.478 x 107°
2 0.998 0.742 x 107° 0.997 0.669 x 10™°
3 0. 997 0.903 x 107° 0.997 0.810 x 107°
4 0. 997 0.104 x 10~ 0. 997 0.925 x 107°
5 0. 997 0.115 x 102 0.996 0.102 x 107
Mach 18
2 Rn 4 Rn
tm/to R T R T
1 0.989 x 10°*  0.995 0.175x 10°*  0.998
2 0.290 x 10" 0.996 0.293x 107! 0.968
3 0.711 x 107" 0.924 0.716 x 10°"  0.926
4 0.110 x 10° 0. 885 0.111 x 10° 0. 887
5 0.145 x 10° 0.851 0. 146 x 10° 0.852

Reflection and Transmission Coefficients for the Plasma Sheath Sur-
rounding a Body Re-entering the Atmosphere at Mach 18 and Mach 30,
at Two Positions on the Surface and for Various Dielectric Constants
of the Antenna Window.

14



CONCLUSIONS

Several conclusions of a qualitative nature may be drawn from
these results. At Mach 18, transmission is almost complete with very
little reflection occurring, whereas, at Mach 30, the situation is re-
versed. It will be noted that in neither case is absorption of energy
responsible for appreciable loss in transmission, since the absorption
coefficient A & 1 - (R + T) is in every case very small. The effect is
due almost entirely to increased reflection.

Also of interest is the effect on transmission of the value of
permittivity of the "window'. At Mach 18, an increase in this per-
mittivity results in a decrease in transmitted power, whereas the opposite
is true at Mach 30. It is suggested that further investigation of this
effect is needed to determine whether it is significant. The results
further indicate that at Mach 30, absorption is more pronounced at the
4R, position than at 2R,,, as evidenced by the smaller values for both
R and T at this position. The reason for this is not yet apparent, but
the difference in wake thickness, together with the fact that ¢ has large
negative values at this speed, are probably responsible,

Summarizing, the results indicate that for the assumed trans-
mission frequency, failure to penetrate the Mach 18 sheath may not be
attributed to reflection or absorption of the electromagnetic energy in the

wave by the plasma through the mechanisms considered here. At Mach 30,

15
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however, these effects almost certainly will preclude transmission

at this frequency and at any position on the body surface.

16
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APPENDIX

Values of pressure and enthalpy in the flow field surrounding a
particular body were computed assuming chemical equilibrium for speeds

of Mach 18 and Mach 30 at an altitude of 80 km. d
From these values, the corresponding temperatures and mass

density ratios were determined from a Mollier diagram of properties of

Yt .. (a -
equilibrium au'.( ) Electron densities were then read from a second

chart giving electron density as a function of mass density ratio for

(b)

various temperatures. Values for the collision frequency v were

determined from the formula

{c)

v=(1.10 x 10! ) x pressure in 3.tm.08pheres
temperature in °K

Using the values of n and v thus determined, ¢ and ¢ were com-
puted using equations (3) and (4). Contours of constant ¢ /e, are plotted
in Figures 3 and 5, and contours of constant 0/e w are plotted in Figures
4 and 6, and approximate location of the shock wave is also shown.

Plots of ¢ /e, and 0/e w as functions of distance along the
normals are given in Figures 7 through 10. The Mach 18 curves are
approximated by exponential functions; the Mach 30 curves by linear func-

tions. These analytic approximations appear in the main body of the report.

18
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